• Turing Post Korea
  • Posts
  • ๐ŸŒFOD#118: OpenAIแ„€แ…ก แ„‡แ…ตแ„Žแ…ฎแ†ซ แ„†แ…งแ†ผแ„‹แ…กแ†ท(ๆ˜Žๆš—): 'แ„‹แ…ตแ„‰แ…กแ†ผแ„’แ…กแ†ซ แ„‡แ…ฉแ„€แ…ฉแ„‰แ…ฅ'แ„‹แ…ช 'แ„€แ…ซแ†ซแ„Žแ…กแ†ญแ„‹แ…ณแ†ซ Codex'

๐ŸŒFOD#118: OpenAIแ„€แ…ก แ„‡แ…ตแ„Žแ…ฎแ†ซ แ„†แ…งแ†ผแ„‹แ…กแ†ท(ๆ˜Žๆš—): 'แ„‹แ…ตแ„‰แ…กแ†ผแ„’แ…กแ†ซ แ„‡แ…ฉแ„€แ…ฉแ„‰แ…ฅ'แ„‹แ…ช 'แ„€แ…ซแ†ซแ„Žแ…กแ†ญแ„‹แ…ณแ†ซ Codex'

+ แ„€แ…ณแ†ทแ„Œแ…ฎแ„‹แ…ด แ„Œแ…ฎแ„‹แ…ญ แ„‚แ…ฒแ„‰แ…ณ แ„†แ…ตแ†พ แ„‹แ…งแ†ซแ„€แ…ฎ

๋ณด๊ณ ์„œ โ€˜์‚ฌ๋žŒ๋“ค์€ ChatGPT๋ฅผ ์–ด๋–ป๊ฒŒ ์“ฐ๊ณ  ์žˆ๋Š”๊ฐ€โ€™

๊ธˆ์ฃผ FOD์—์„œ๋Š”, ์›๋ž˜๋Š” ๋‹ค๋ฅธ ์ฃผ์ œ๋ฅผ ์ƒ๊ฐํ•˜๊ณ  ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ์ตœ๊ทผ์— โ€˜ํ™˜๊ฐ(Hallucination)โ€™์— ๋Œ€ํ•œ ์ข‹์€ ๋…ผ๋ฌธ๋“ค์ด ๋‚˜์™€์„œ, ์ด ์ด์•ผ๊ธฐ๋ฅผ ์ข€ ํ•ด ๋ณผ๊นŒ ๋…ผ์˜๋ฅผ ํ•˜๊ณ  ์žˆ์—ˆ๊ฑฐ๋“ ์š”.

๊ทธ๋Ÿฐ๋ฐ, ๊ฐ‘์ž๊ธฐ ์˜คํ”ˆAI๊ฐ€ ์›”์š”์ผ์— ๋‰ด์Šค๋ฅผ ๋‚ด๋ณด๋ƒˆ์Šต๋‹ˆ๋‹ค - ์‚ฌ๋žŒ๋“ค์ด ChatGPT๋ฅผ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•˜๋Š”์ง€ ๊ตฌ์ฒด์ ์ธ ์ˆ˜์น˜๋“ค๊นŒ์ง€ ๋‹ด์€ 63ํŽ˜์ด์ง€ ์งœ๋ฆฌ ๋ณด๊ณ ์„œ๋ฅผ ๋ƒˆ์–ด์š”.

์ผ๋‹จ, ์–ด๋–ค ์ธ์‚ฌ์ดํŠธ๊ฐ€ ๋“ค์–ด ์žˆ์„์ง€ ํฐ ๊ด€์‹ฌ์ด ์ƒ๊ฒผ๊ณ , ๋ณด๊ณ ์„œ๋ฅผ ์•„์˜ˆ ์ถœ๋ ฅํ•ด์„œ ์ฝ์–ด๋ดค์Šต๋‹ˆ๋‹ค. ์ฝ๋Š” ๊ณผ์ •์—์„œ ์ƒ๊ธด ์˜๋ฌธ์ ๋“ค์„ ํ™•์ธํ•˜๊ณ  ๋ช…ํ™•ํžˆ ํ•˜๋ ค๊ณ  ๋˜ ChatGPTํ•˜๊ณ  ์ด์•ผ๊ธฐ๋„ ์ข€ ๋‚˜๋ˆ  ๋ณด๊ตฌ์š”.

๊ฐœ์ธ์ ์œผ๋กœ ์ข€ ๋ฏธ์Šคํ„ฐ๋ฆฌ๋‹ค๋ผ๊ณ  ์ƒ๊ฐํ•œ ๋ถ€๋ถ„๋“ค์ด ์žˆ์—ˆ๋Š”๋ฐ, ์ด ๋ณด๊ณ ์„œ๋ฅผ ์“ด ์‚ฌ๋žŒ๋“ค์ด ์–ด๋–ค ์ƒ๊ฐ์œผ๋กœ ๋ณด๊ณ ์„œ๋ฅผ ๋ฆฌ๋ทฐํ–ˆ์„๊นŒ ํ•˜๋Š” ํฌ์ธํŠธ๋“ค์ด ์žˆ์—ˆ์–ด์š”.

ํ”„๋กฌํ”„ํŠธ: ์ด ๋ณด๊ณ ์„œ์— ๋Œ€ํ•ด ๋ช‡ ๊ฐ€์ง€ ์˜๋ฌธ์ด ๊ฐ€๋Š” ์‚ฌํ•ญ์ด ์žˆ๊ฑฐ๋“ . ๋„ˆ๋Š” ์ด ๋ณด๊ณ ์„œ๋ฅผ ๋ณด๊ณ  ์–ด๋–ค ๋ถ€๋ถ„์— ์ผ๊ด€์„ฑ์ด ์—†๊ฑฐ๋‚˜ ์ •ํ™•ํ•˜์ง€ ์•Š๊ฑฐ๋‚˜, ์•„๋‹ˆ๋ฉด ๊ฒฐํ•จ์ด ์žˆ๋‹ค๊ณ  ํŒ๋‹จํ•˜๋Š”์ง€ ์ด์•ผ๊ธฐ๋ฅผ ํ•ด ์ค˜.

๋„ค, ์ œ๊ฐ€ ๋ณด๊ธฐ์—๋Š”, ์ด ๋ณด๊ณ ์„œ ์—ฌ๊ธฐ์ €๊ธฐ์— ์ผ๊ด€์„ฑ์ด ์—†๋Š” ๋ถ€๋ถ„์ด ๊ฝค ์žˆ์–ด์š”. ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ์— โ€˜์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜โ€™๋ผ๊ณ ๊นŒ์ง€ ํ•  ๊ฑด ์•„๋‹์ง€ ๋ชฐ๋ผ๋„, ์ด๋Ÿฐ ์ž‘์€ ์˜ค๋ฅ˜๋“ค์ด๋‚˜ โ€œ์–ด?โ€ ํ•˜๋Š” ๋ถ€๋ถ„๋“ค์ด ํ•˜๋‚˜ํ•˜๋‚˜ ์Œ“์—ฌ์„œ ์‹ ๋ขฐ์„ฑ์— ํ ์ง‘์„ ๋‚ด๋Š” ๊ฑฐ์ฃ . ๊ฒŒ๋‹ค๊ฐ€, ๋ณด๊ณ ์„œ ์ „์ฒด๋ฅผ ํ”๋“œ๋Š” ๋” ํฐ ๋ฌธ์ œ์ ๋„ ์žˆ์–ด์š”.

๊ทธ๋Ÿฐ ์ ๋“ค์„ ํ•œ ๋ฒˆ ์งš์–ด๋ณผ๊ป˜์š”.

๋ณด๊ณ ์„œ์—๋Š” โ€œ2025๋…„ 7์›” ๊ธฐ์ค€์œผ๋กœ, ChatGPT ์†Œ๋น„์ž ์ฟผ๋ฆฌ์˜ ์•ฝ 70%๋Š” ์—…๋ฌด์™€ ๊ด€๋ จ์ด ์—†์—ˆ๋‹ค. ์—…๋ฌด ๊ด€๋ จ ์ฟผ๋ฆฌ์™€ ๋น„์—…๋ฌด ๊ด€๋ จ ์ฟผ๋ฆฌ๊ฐ€ ๋ชจ๋‘ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์ง€๋งŒ, ๋น„์—…๋ฌด ์ฟผ๋ฆฌ๊ฐ€ ๋” ๋น ๋ฅด๊ฒŒ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹คโ€๋Š” ๋‚ด์šฉ์ด ์—ฌ๋Ÿฌ๊ฐ€์ง€ ํ‘œํ˜„์œผ๋กœ ๋ฐ˜๋ณตํ•˜๋ฉด์„œ ๋‚˜์˜ต๋‹ˆ๋‹ค.

๊ทธ๋Ÿฐ๋ฐ ๊ฐ์ฃผ๋ฅผ ๋ณด๋ฉด ์ด๋Ÿฐ ๋‚ด์šฉ์ด ์žˆ์–ด์š”. โ€œ์—ฐ๊ตฌ ์ƒ˜ํ”Œ์€ ์„ธ ๊ฐ€์ง€ ์†Œ๋น„์ž ์š”๊ธˆ์ œ(๋ฌด๋ฃŒ, Plus, Pro)๋ฅผ ํฌํ•จํ•œ๋‹ค. ์˜คํ”ˆAI๋Š” ๋‹ค๋ฅธ ๋‹ค์–‘ํ•œ ChatGPT ์š”๊ธˆ์ œ(Business fka. Teams, Enterprise, Education)๋„ ์ œ๊ณตํ•˜์ง€๋งŒ, ์ด๋ฒˆ ์ƒ˜ํ”Œ์—๋Š” ํฌํ•จํ•˜์ง€ ์•Š์•˜๋‹ค.โ€

์ด ๋ฆฌํฌํŠธ๋ฅผ โ€˜์†Œ๋น„์ž ์‚ฌ์šฉ ๋ณด๊ณ ์„œโ€™๋กœ๋งŒ ๋ณธ๋‹ค๋ฉด, Teams, Business, Enterprise, Education ๊ณ„์ •์„ ์ œ์™ธํ•œ ๊ฑด ๋‹น์—ฐํ•ด ๋ณด์ž…๋‹ˆ๋‹ค - ์ด๊ฒƒ๋“ค์€ โ€˜์†Œ๋น„์ž ์š”๊ธˆ์ œโ€™๊ฐ€ ์•„๋‹ˆ๋ผ ๊ธฐ์—…์šฉ ์ƒํ’ˆ์ด๋‹ˆ๊นŒ์š”. ์ด๊ฒƒ ๊ทธ ์ž์ฒด ๋•Œ๋ฌธ์— ๋…ผ๋ฌธ์ด ์ž˜๋ชป๋œ ๊ฑด ๋ฌผ๋ก  ์•„๋‹ˆ์—์š”.

๊ทธ๋Ÿฐ๋ฐ, ๊ทธ๋Ÿฌ๋ฉด โ€˜์—…๋ฌด vs. ๋น„์—…๋ฌดโ€™ ์‚ฌ์šฉ ๋น„์ค‘์— ๋Œ€ํ•ด์„œ๋Š” ์–ด๋–ป๊ฒŒ ๊ฒฐ๋ก ์„ ๋‚ด๋ฆด ์ˆ˜ ์žˆ๋Š” ๊ฑธ๊นŒ์š”?

๋น„์œ ๋ฅผ ํ•˜์ž๋ฉด, ๋งˆ์น˜ ์‚ฌ๋žŒ๋“ค์ด ํ”ผ์ž๋ฅผ ์–ด๋–ป๊ฒŒ ๋จน๋Š”์ง€์— ๋Œ€ํ•œ ๋ณด๊ณ ์„œ๋ฅผ ์“ฐ๋ฉด์„œ, ์ผ๋ฐ˜ ์‹๋‹น์ด๋‚˜ ํ•™๊ต ์‹๋‹น, ํšŒ์‚ฌ ํŒŒํ‹ฐ์—์„œ ๋จน๋Š” ํ”ผ์ž๋Š” ๋‹ค ๋นผ๊ณ  ๋„๋ฏธ๋…ธ ํ”ผ์ž ๋งค์žฅ์—์„œ ํฌ์žฅํ•ด ๊ฐ„ ๊ฒƒ๋งŒ ์„ธ๋Š” ๊ฒƒ ๋น„์Šทํ•œ ๊ฑด๋ฐ์š”.

ํ˜ผ๋ž€์Šค๋Ÿฌ์šด ๊ฑด ๋ฐ”๋กœ โ€˜๋ณด๊ณ ์„œ์˜ ํ”„๋ ˆ์ž„โ€™์ด์˜ˆ์š”. ๋ณด๊ณ ์„œ ์ œ๋ชฉ๊ณผ ๊ฒฐ๋ก ์€ ๋งˆ์น˜ โ€˜์‚ฌ๋žŒ๋“ค์ด ChatGPT๋ฅผ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•˜๋Š”์ง€โ€™ ์ „์ฒด๋ฅผ ๋‹ค๋ฃจ๊ณ  ์ด์•ผ๊ธฐํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด์ง€๋งŒ, ์‚ฌ์‹ค์€ โ€˜์†Œ๋น„์ž๋“ค์ด ChatGPT๋ฅผ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•˜๋Š”์ง€โ€™์— ๋Œ€ํ•œ ๋‚ด์šฉ์ด๋‹ˆ๊นŒ์š”. ์ด ์ค‘์š”ํ•œ ์ˆ˜์‹์–ด ํ•˜๋‚˜๊ฐ€ ๋น ์ง€๋ฉด์„œ, ๋ณด๊ณ ์„œ์— ์‹ค๋ฆฐ ์‚ฌ์‹ค๊ณผ ์ธ์‚ฌ์ดํŠธ๋“ค์€ ์™„์ „ํžˆ ๋‹ค๋ฅด๊ฒŒ ์ฝํ˜€์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด ๋ฉ๋‹ˆ๋‹ค.

  • โ€œ์‚ฌ์šฉ๋Ÿ‰์˜ 70%๊ฐ€ ๋น„์—…๋ฌด ๊ด€๋ จโ€์ด๋ผ๋Š” ๋‚ด์šฉ์€ ๋ฌด๋ฃŒ/Plus/Pro ์‚ฌ์šฉ์ž์˜ ๊ฒฝ์šฐ์—๋Š” ํ•ด๋‹น๋˜์ง€๋งŒ, (๋‹น์—ฐํ•˜๊ฒŒ๋„) ์—…๋ฌด์šฉ ์‚ฌ์šฉ์ด ์••๋„์ ์ผ ์ˆ˜ ๋ฐ–์— ์—†๋Š” โ€˜๊ธฐ์—… ๊ณ„์ •โ€™์ด๋ผ๋Š” ๊ฑฐ๋Œ€ํ•œ ๋ถ€๋ถ„์„ ๋นผ๋†“๊ณ ์„œ ์ „์ฒด ์‚ฌ์šฉ ํŒจํ„ด์— ์ ์šฉํ•  ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค.

  • โ€˜์—…๋ฌด vs. ๋น„์—…๋ฌดโ€™ ์‚ฌ์šฉ ํŠธ๋ Œ๋“œ์˜ ๋ณ€ํ™”๋Š” โ€˜์†Œ๋น„์ž ๊ณ„์ •โ€™ ๊ทธ๋ฃน ์•ˆ์—์„œ๋Š” ์‚ฌ์‹ค์ด๊ฒ ์ง€๋งŒ, ์‚ฌ๋ฌด์‹ค, ๊ต์‹ค, ๊ธฐ์—… ์›Œํฌํ”Œ๋กœ์šฐ์—์„œ ์–ด๋–ค ์ผ์ด ๋ฒŒ์–ด์ง€๊ณ  ์žˆ๋Š”์ง€๋Š” ์•Œ ์ˆ˜๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. ๊ฑฐ๊ธฐ์„œ๋„ ์—…๋ฌด์™€ ๋น„์—…๋ฌด ์–‘์ชฝ ๋ชจ๋‘์— ChatGPT๋ฅผ ์“ฐ๊ณ  ์žˆ์„ ํ…Œ๋‹ˆ๊นŒ์š”.

์ •๋ฆฌํ•˜์ž๋ฉด ์ด๋ ‡์Šต๋‹ˆ๋‹ค.

  • ๋งŒ์•ฝ ์—ฐ๊ตฌ์ž๋“ค์ด ์ œ๋ชฉ์„ โ€˜์†Œ๋น„์ž๋“ค์ด ChatGPT๋ฅผ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•˜๋Š”์ง€โ€™๋ผ๊ณ  ํ–ˆ๋‹ค๋ฉด ์•„๋ฌด ๋ฌธ์ œ๊ฐ€ ์—†์—ˆ์„ ๊ฒ๋‹ˆ๋‹ค.

  • ๊ทธ๋Ÿฐ ๋ถ€๋ถ„์„ ๋†“์ณค๊ธฐ ๋•Œ๋ฌธ์—, ์ด ๋ณด๊ณ ์„œ๋Š” โ€œChatGPT๊ฐ€ ๋Œ€๋ถ€๋ถ„ ๋น„์—…๋ฌด์šฉ์œผ๋กœ ์‚ฌ์šฉ๋œ๋‹คโ€๋Š” ์ฃผ์žฅ์˜ โ€˜์ฆ๊ฑฐโ€™๋กœ ์ž˜๋ชป ์ธ์šฉ๋  ์œ„ํ—˜์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์ฃผ์žฅ์€ ๋ณด๊ณ ์„œ์—์„œ ์„ ํƒํ•œ ํ‘œ๋ณธ ๊ทธ๋ฃน์˜ ํŠน์„ฑ ๋•Œ๋ฌธ์— ๋ณด๊ณ ์„œ ๋‚ด์šฉ์œผ๋กœ ๋’ท๋ฐ›์นจํ•  ์ˆ˜ ์—†๋Š” ๋‚ด์šฉ์ด์ฃ .

๋ณด๊ณ ์„œ ์ €์ž๋“ค์€ โ€œ๋Œ€๋ถ€๋ถ„์˜ AI ๊ฒฝ์ œ ๋ถ„์„์ด ์œ ๊ธ‰ ๋…ธ๋™์—์„œ์˜ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ์— ์ดˆ์ ์„ ๋งž์ถ”๊ณ  ์žˆ์ง€๋งŒ, ์ผ ์™ธ์ ์ธ ํ™œ๋™(๊ฐ€์ • ๋‚ด ์ƒ์‚ฐ)์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๋„ ๋น„์Šทํ•œ ๊ทœ๋ชจ๊ณ , ์–ด์ฉŒ๋ฉด ๋” ํด ์ˆ˜๋„ ์žˆ๋‹คโ€๋ผ๊ณ  ๋งํ•˜๊ณ  ์žˆ๋Š” ์…ˆ์ธ๋ฐ์š”.

๋งŒ์•ฝ ์ด๋Ÿฐ ์ฃผ์žฅ์„ ํ•˜๋ ค๋ฉด, ์‹ค์ œ๋กœ ๋น„๊ต ๋ถ„์„์„ ํ•ด ๋ณด๊ณ  ์ฆ๋ช…์„ ํ•ด์•ผ๊ฒ ์ฃ  - ๊ทธ๋Ÿฐ ๊ณผ์ •์ด ์—†๋‹ค๋ฉด, ์ด๋Ÿฐ ๋น„๊ต๋Š” ๊ทธ์ € ๊ทผ๊ฑฐ์—†๋Š” ์ฃผ์žฅ์ผ ๋ฟ์ด๊ตฌ์š”.

๋˜ โ€œ๋น„์—…๋ฌด ์‚ฌ์šฉ์ด ๋” ๋น ๋ฅด๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์€, ์ƒ์„ฑํ˜• AI๋ฅผ ์‚ฌ์šฉํ•ด์„œ ์–ป๋Š” ํ›„์ƒ ์ด๋“(Welfare Gain)์ด ์ƒ๋‹นํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์‹œ์‚ฌํ•œ๋‹คโ€๊ณ  ์ฃผ์žฅํ•˜๊ธฐ๋„ ํ•˜๋Š”๋ฐ์š”:

์ƒ์„ฑํ˜• AI๊ฐ€ ํ›„์ƒ ์ด๋“์„ ๊ฐ€์ ธ์˜จ๋‹ค๋Š” ๊ฑด, AI๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ฐœ์ธ์ด ๋” ํšจ์œจ์ ์œผ๋กœ ์—…๋ฌด๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ฑฐ๋‚˜, ์ƒˆ๋กœ์šด ์ฐฝ์ž‘๋ฌผ์„ ๋งŒ๋“ค๊ณ , ํ•™์Šต ๋Šฅ๋ฅ ์„ ๋†’์ด๋Š” ๋“ฑ ์ผ์ƒ์ƒํ™œ์—์„œ ๋А๋ผ๋Š” ํŽธ์ต์ด ์ปค์ง€๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค

์˜ˆ๋ฅผ ๋“ค์–ด์„œ, ์—…๋ฌด ์‹œ๊ฐ„ ๋‹จ์ถ•(๋ณด๊ณ ์„œ ์ดˆ์•ˆ ์ž‘์„ฑ, ์ž๋ฃŒ ์š”์•ฝ ๋“ฑ AI๊ฐ€ ์ฒ˜๋ฆฌํ•˜๋ฉด์„œ ๋‚จ๋Š” ์‹œ๊ฐ„์„ ๋‹ค๋ฅธ ์ค‘์š”ํ•œ ์ผ์— ํˆฌ์ž), ์ฐฝ์ž‘ ํ™œ๋™ ์ง€์›(๊ทธ๋ฆผ, ๊ธ€์“ฐ๊ธฐ ๋“ฑ ์ฐฝ์ž‘์˜ ์ง„์ž… ์žฅ๋ฒฝ์ด ๋‚ฎ์•„์ ธ ๋ˆ„๊ตฌ๋‚˜ ์‰ฝ๊ฒŒ ์ž๊ธฐ๋งŒ์˜ ์ž‘ํ’ˆ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Œ), ๊ฐœ์ธ ํ•™์Šต ์ฆ์ง„(๋ณต์žกํ•œ ๋‚ด์šฉ์„ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•ด ์ฃผ๊ฑฐ๋‚˜, ๋งž์ถคํ˜• ํ•™์Šต ์ž๋ฃŒ๋ฅผ ๋ฐ›์•„ ์ง€์‹์„ ๋น ๋ฅด๊ฒŒ ์Šต๋“) ๋“ฑ ๊ฐœ์ธ์˜ ์—ฌ๊ฐ€, ํ•™์Šต, ์ž๊ธฐ๊ณ„๋ฐœ ๋“ฑ ์‚ถ์˜ ์งˆ์„ ๋†’์ด๋Š”๋ฐ ๊ธฐ์—ฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๋œป์ž…๋‹ˆ๋‹ค.

ํŽธ์ง‘์ž ์ฃผ

์ด ํฌ์ธํŠธ๋ฅผ ํŠน๋ณ„ํžˆ ๊ฐ•์กฐํ•˜๊ณ  ์‹ถ์–ดํ•˜๋Š” ์ด์œ ๊ฐ€ ์žˆ๋Š”์ง€๋Š” ๋ชจ๋ฅด๊ฒ ์ง€๋งŒ, ์ด ์—ญ์‹œ ๊ทผ๊ฑฐ๊ฐ€ ๋นˆ์•ฝํ•ฉ๋‹ˆ๋‹ค.

์ˆ˜๋ฐฑ๋งŒ, ์ˆ˜์ฒœ๋งŒ ๋ช…์˜ ์‚ฌ์šฉ์ž, ๋…์ž๋ฅผ ๊ฐ€์ง„ ์„œ๋น„์Šค๋‚˜ ํšŒ์‚ฌ๋ผ๋ฉด, ๊ฑฐ๊ธฐ์„œ๋ถ€ํ„ฐ ๋‚˜์˜ค๋Š” ๋ง์— ๋Œ€ํ•ด์„œ ์ฑ…์ž„์„ ์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์–ด์จŒ๋“  ์ด๋ ‡๊ฒŒ ์ฝ๋Š” ์‚ฌ๋žŒ์œผ๋กœ ํ•˜์—ฌ๊ธˆ ์˜๋ฌธ์ด ๋“ค๊ฒŒ ํ•œ๋‹ค๋ฉด, ๊ฒฐ๊ตญ์€ ์›์ €์˜ ์‹ ๋ขฐ์„ฑ์— ๊ธˆ์ด ๊ฐˆ ์ˆ˜ ๋ฐ–์— ์—†์œผ๋‹ˆ๊นŒ์š”.

์ด๋ ‡๊ฒŒ โ€˜์˜คํ”ˆAIโ€™๋ฅผ ์›๋ง(?)ํ•˜๋ฉด์„œ ๋งˆ๋ฌด๋ฆฌ๋ฅผ ํ•˜๋‚˜ ํ–ˆ๋”๋‹ˆ, Codex๋ฅผ ์ถœ์‹œํ–ˆ๋„ค์š”. ์ดˆ๊ธฐ ๋ฐ˜์‘์ด ๋‚˜์˜์ง€๋Š” ์•Š์•„ ๋ณด์ž…๋‹ˆ๋‹ค. ^.^

์˜คํ”ˆAI, ์‹ ๋ชจ๋ธ โ€˜GPT-5-Codexโ€™ ์ถœ์‹œ

์˜คํ”ˆAI์˜ ์ฝ”๋”ฉ ์—์ด์ „ํŠธ Codex์— ์ ์šฉํ•  ์‹ ๋ชจ๋ธ โ€˜GPT-5-Codexโ€™๋ฅผ ๋‚ด๋†จ์Šต๋‹ˆ๋‹ค.

Codex ๋ฟ ์•„๋‹ˆ๋ผ Claude Code, Cursor ๋“ฑ ์ˆ˜๋งŽ์€ AI ๊ธฐ๋ฐ˜ ์ฝ”๋”ฉ ๋„๊ตฌ๋“ค์ด ๊ฐ์ถ•์ „์„ ํŽผ์ด๊ณ  ์žˆ๋Š”๋ฐ์š”. ์—ฌ๋Ÿฌ๋ถ„์€ ์–ด๋–ค ๋„๊ตฌ์˜ ์†์„ ๋“ค์–ด์ฃผ์‹œ๋‚˜์š”?

Codex๋Š” ์ง€์‹œ์— ์ž˜ ๋”ฐ๋ฅด๊ณ , ์‘๋‹ต ์†๋„๋„ ๋น ๋ฅด๊ณ , ๊ทธ๋ฆฌ๊ณ  ๋น„๊ต์  ์˜ค๋ฅ˜๊ฐ€ ์—†์ด ์ฝ”๋“œ๋ฅผ ์ƒ์„ฑํ•ด์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ํ† ํฐ ์‚ฌ์šฉ ์ตœ์ ํ™”, ์ž‘์—… ๋‚œ์ด๋„์— ๋”ฐ๋ฅธ ์Šค๋งˆํŠธํ•œ ์ฒ˜๋ฆฌ ๋ฐฉ์‹์œผ๋กœ, ์—์ด์ „ํŠธ๋กœ์„œ์˜ ๋ฉด๋ชจ๋ฅผ ๊ฐ•์กฐํ•œ ๊ฒŒ ๋‹๋ณด์ž…๋‹ˆ๋‹ค - ๊ฐ„๋‹จํ•œ ์ž‘์—…์€ ์ˆœ์‹๊ฐ„์— ์ฒ˜๋ฆฌํ•˜๊ณ , ๋ณต์žกํ•œ ๋ฌธ์ œ๋ฅผ ๋ฐ›์œผ๋ฉด ๋” ๊นŠ์ด ์ถ”๋ก ์„ ํ•ด์„œ ๊ฐœ๋ฐœ์ž์˜ ์ƒ์‚ฐ์„ฑ์„ ํ•œ์ธต ๋Œ์–ด์˜ฌ๋ฆฝ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ผ๋ถ€ ๊ฐœ๋ฐœ์ž๋Š” ๋ณต์žกํ•œ ์ž‘์—…์„ ํ•  ๋•Œ Codex๊ฐ€ "์ข€ ๋А๋ฆฌ๊ฒŒ ๋А๊ปด์ง„๋‹ค"๊ณ  ํ•˜๊ธฐ๋„ ํ•˜๋„ค์š”.

๋ฌผ๋ก , Codex๋Š” ์ด๋ฏธ์ง€ ์ž…๋ ฅ์„ ์ง€์›ํ•˜์ง€ ์•Š๋Š”๋‹ค๋“ ๊ฐ€, ๋ณต์žกํ•œ ๋ฆฌํŒฉํ† ๋ง์— ์ œํ•œ์ด ์žˆ๋‹ค๋“ ๊ฐ€ ํ•˜๋Š” ํ•œ๊ณ„๋„ ์žˆ์Šต๋‹ˆ๋‹ค. Claude Code๊ฐ€ ๊ทธ๋Ÿฐ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋ฉด์—์„œ ์™„์„ฑ๋„๊ฐ€ ์•„์ง์€ ๋†’๋‹ค๊ณ  ๋ณด์ง€๋งŒ, Codex๋„ ๋น ๋ฅด๊ฒŒ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋Š” ๋งŒํผ, ๊ฒฐ๊ตญ์€ ๊ฐœ๋ฐœ์ž ์›Œํฌํ”Œ๋กœ์šฐ์™€ ์–ด๋–ค ๋„๊ตฌ๊ฐ€ ๋” ์ •๋ฐ€ํ•˜๊ณ  ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ํ†ตํ•ฉ๋˜๋А๋ƒ๊ฐ€ ์„ฑ๊ณต์˜ ์—ด์‡ ๊ฐ€ ๋˜์ง€ ์•Š์„๊นŒ ์‹ถ๋„ค์š”.

*์•„์ง ํŠœ๋ง ํฌ์ŠคํŠธ ์ฝ”๋ฆฌ์•„ ๊ตฌ๋… ์•ˆ ํ•˜์…จ๋‚˜์š”? ๊ตฌ๋…ํ•ด ์ฃผ์‹œ๋ฉด ๋งค์ฃผ ์ค‘์š”ํ•œ AI ๋‰ด์Šค๋ฅผ ์ •๋ฆฌํ•œ ๋‹ค์ด์ œ์ŠคํŠธ๋ฅผ ๋ฐ›์œผ์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!

ํŠธ์œ„ํ„ฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ (Twitter Library) ๐Ÿฆ

๊ฑฐ์˜ ๋งค์ฃผ RL(๊ฐ•ํ™” ํ•™์Šต)์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ์™€ ์ž๋ฃŒ๊ฐ€ ์Ÿ์•„์ ธ ๋‚˜์˜ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ตœ์‹  ํŠธ๋ Œ๋“œ์— ๋ฐœ๋งž์ถฐ ์ง€์‹์„ ๋Š์ž„์—†์ด โ€˜์ƒˆ๋กœ๊ณ ์นจโ€™ํ•˜๊ณ  ์—…๋ฐ์ดํŠธํ•ด์•ผ ํ•˜์ฃ  - ํž˜๋“ค๊ธฐ๋Š” ํ•˜์ง€๋งŒ์š” ^.^;. ๊ทธ๋ž˜์„œ ์˜ค๋Š˜์€, ์—ฌ๋Ÿฌ๋ถ„์ด RL ๋ถ„์•ผ์—์„œ ๋’ค์ฒ˜์ง€์ง€ ์•Š๋„๋ก ๋„์™€์ค„ 6๊ฐ€์ง€ ๋ฌด๋ฃŒ ์ž๋ฃŒ๋ฅผ ๊ณต์œ ํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค:

๊ธˆ์ฃผ์˜ ์ฃผ๋ชฉํ•  ๋งŒํ•œ ์—…๊ณ„ ๋™ํ–ฅ ๐Ÿ“ฐ

์•ค์“ฐ๋กœํ”ฝ, MCP ๊ณต๊ฐœ

์•ค์“ฐ๋กœํ”ฝ์˜ MCP ๋ ˆ์ง€์ŠคํŠธ๋ฆฌ๊ฐ€ ๋“œ๋””์–ด ๊ณต๊ฐœ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๊ณต๊ฐœ์ ์œผ๋กœ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ MCP ์„œ๋ฒ„๋ฅผ ์ฐพ์•„๋ณผ ์ˆ˜ ์žˆ๋Š”, ์ผ์ข…์˜ ์˜คํ”ˆ ์นดํƒˆ๋กœ๊ทธ์ด์ž API์ธ๋ฐ์š”. ์ด ๋ ˆ์ง€์ŠคํŠธ๋ฆฌ๋Š”, ๊ณต๊ณต, ๊ทธ๋ฆฌ๊ณ  ๋ฏผ๊ฐ„ ํ•˜์œ„ ๋ ˆ์ง€์ŠคํŠธ๋ฆฌ๊ฐ€ ์„œ๋กœ ๋ฐฉํ•ดํ•˜์ง€ ์•Š๊ณ  ์„ฑ์žฅํ•  ์ˆ˜ ์žˆ๊ฒŒ๋” ์„ค๊ณ„๋œ 'Single Source of Truth' ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ปค๋ฎค๋‹ˆํ‹ฐ๊ฐ€ ์ง์ ‘ ๊ด€๋ฆฌํ•˜๋Š” ๋ชจ๋ธ๊ณผ ์˜คํ”ˆ ์†Œ์Šค ๊ธฐ๋ฐ˜์„ ๊ฐ–์ถ˜ ์ด ํ”„๋กœ์ ํŠธ๋Š”, '๋งฅ๋ฝ์„ ์ธ์‹ํ•˜๋Š” AI(Context-Aware AI)'๋ฅผ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•œ ์•„์ฃผ ์ค‘์š”ํ•œ ๊ธฐ์ดˆ์ž…๋‹ˆ๋‹ค. ์กฐ์šฉํ•˜๊ฒŒ ์‹œ์ž‘ํ–ˆ์ง€๋งŒ, ๊นŠ์€ ๋ฟŒ๋ฆฌ, ๊ทธ๋ฆฌ๊ณ  ์›๋Œ€ํ•œ ์•ผ๋ง์„ ๊ฐ€์ง„ ํ”„๋กœ์ ํŠธ๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

Oracle์˜ ํŒŒ๊ฒฉ์ ์ธ ํ”ผ๋ฒ—

10๋…„ ๋™์•ˆ โ€˜์กฐ์šฉํžˆโ€™ ์ธํ”„๋ผ๋ฅผ ๊ตฌ์ถ•ํ•ด ์˜จ Oracle, ๋“œ๋””์–ด AI ๊ฑฐ๋ฌผ๋“ค ์‚ฌ์ด์— ํฐ ์†Œ๋ฆฌ๋ฅผ ๋‚ด๋ฉฐ ๋›ฐ์–ด๋“ค์—ˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์ƒ ์ตœ๋Œ€ ๊ทœ๋ชจ์˜ ์ปดํ“จํŒ… ๊ณ„์•ฝ์„ ์ถ”์ง„ํ•˜๊ณ  ์žˆ๊ณ , AI ์ˆ˜์š”๊ฐ€ ๋ฐ€๋ ค๋“ค๋ฉด์„œ ๋ฐฑ๋กœ๊ทธ๊ฐ€ ๋ˆˆ์— ๋„๊ฒŒ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด์ œ Oracle์€ โ€˜๋‚ก์€โ€™ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๊ณต๊ธ‰์—…์ฒด๊ฐ€ ์•„๋‹ˆ๋ผ, ๊ธฐ์—…์šฉ AI์˜ ํ•ต์‹ฌ ์—ฐ๊ฒฐ๊ณ ๋ฆฌ๋กœ ์ž๋ฆฌ๋งค๊น€ํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ ๊ฐ™๋„ค์š”. AI ๋ชจ๋ธ์„ ๋งŒ๋“œ๋Š” ๊ตฐ๋น„ ๊ฒฝ์Ÿ์— ๋›ฐ์–ด๋“ค์ง€ ์•Š๊ณ , ๋‹ค๋ฅธ ํšŒ์‚ฌ๋“ค์ด ๊ทธ ์œ„๋ฅผ ๋‹ฌ๋ฆด ์ˆ˜ ์žˆ๋„๋ก ๋ฐ์ดํ„ฐ, ๊ฑฐ๋ฒ„๋„Œ์Šค, ์œ ํ†ต์ด๋ผ๋Š” '์ฒ ๋กœ'๋ฅผ ๊น”์•„๋†“์€ ๊ฒ๋‹ˆ๋‹ค.

Devin, ๋ ˆ๋ฒจ ์—…!

์ฝ”๋”ฉ ์—์ด์ „ํŠธ Devin์„ ๋งŒ๋“  Cognition AI๊ฐ€ ์ตœ๊ทผ 102์–ต ๋‹ฌ๋Ÿฌ(์•ฝ 14์กฐ ์›)์˜ ๊ฐ€์น˜๋กœ 4์–ต ๋‹ฌ๋Ÿฌ(์•ฝ 5,500์–ต ์›)์˜ ํˆฌ์ž๋ฅผ ์œ ์น˜ํ–ˆ์Šต๋‹ˆ๋‹ค. ์˜ฌ ์ดˆ๋งŒ ํ•ด๋„ 40์–ต ๋‹ฌ๋Ÿฌ ๊ฐ€์น˜์˜€๋Š”๋ฐ, ๋ฒŒ์จ ๋‘ ๋ฐฐ ์ด์ƒ ๋›ด ๊ธˆ์•ก์ด์ฃ . 1๋…„๋„ ์•ˆ ๋ผ์„œ ์—ฐ๊ฐ„ ๋ฐ˜๋ณต ๋งค์ถœ(ARR)์ด 100๋งŒ ๋‹ฌ๋Ÿฌ์—์„œ 7,300๋งŒ ๋‹ฌ๋Ÿฌ๋กœ ๊ธ‰์ฆํ–ˆ๊ณ , ์ˆœ์ˆ˜ ์†Œ๊ฐ์•ก(Net Burn)์€ 2,000๋งŒ ๋‹ฌ๋Ÿฌ ๋ฏธ๋งŒ์ž…๋‹ˆ๋‹ค. ํšŒ์‚ฌ์˜ ๋ฌธํ™”๋งŒํผ์ด๋‚˜ ๊ณต๊ฒฉ์ ์ธ ์ˆ˜์น˜๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๊ฒ ์ฃ ? ์žฅ์‹œ๊ฐ„ ๋…ธ๋™, ์ •๋ฆฌํ•ด๊ณ , ๋ฐ”์ด์•„์›ƒ(Buyout) ๊ฐ™์€ ์ด์Šˆ๋“ค๋„ Cognition AI์— ๋ˆ์„ ์‹ธ๊ณ  ๋“ค์–ด์˜ค๋Š” ํˆฌ์ž์ž๋“ค์„ ๋ง‰์ง€ ๋ชปํ–ˆ๊ณ , ์„ฑ์žฅ์„ ๋Šฆ์ถ”์ง€๋„ ๋ชปํ–ˆ์ฃ . ๊ฐ€์น˜์™€ ์†๋„ ๋ฉด์—์„œ ๋งˆ์น˜ โ€˜ํ•˜์ดํผ๋ฃจํ”„โ€™๋ฅผ ํƒ„ ๋“ฏํ•ฉ๋‹ˆ๋‹ค. ํŠœ๋งํฌ์ŠคํŠธ ์ฝ”๋ฆฌ์•„์—์„œ ๊ณง ์ด ํšŒ์‚ฌ์— ๋Œ€ํ•œ ๋ถ„์„ ๊ธฐ์‚ฌ๋ฅผ ๋ฐœํ–‰ ์˜ˆ์ •์ด๋‹ˆ, ๊ธฐ๋Œ€ํ•ด ์ฃผ์„ธ์š”.

ํŠœ๋ง ํฌ์ŠคํŠธ ์ฝ”๋ฆฌ์•„ํŒ€์ด ์ฝ๊ณ  ์žˆ๋Š” ๊ฒƒ๋“ค

"Magical Thinking on AI"๋ผ๋Š” ์ด๋ฆ„์˜ ์ด ๊ธ€์—์„œ, ๋ฉœ๋ผ๋‹ˆ๋Š” โ€˜ํ† ๋งˆ์Šค ํ”„๋ฆฌ๋“œ๋จผ์˜ ์ตœ๊ทผ ์ฃผ์žฅโ€™์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋‹ค๋ฃน๋‹ˆ๋‹ค. ํ† ๋งˆ์Šค ํ”„๋ฆฌ๋“œ๋จผ์€ AI๋ฅผ ์•ˆ์ „ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ ๋ฏธ๊ตญ๊ณผ ์ค‘๊ตญ์˜ ํ˜‘๋ ฅ์ด ํ•„์š”ํ•˜๊ณ , ๋งŒ์•ฝ ์šฐ๋ฆฌ๊ฐ€ ์ž˜ ๋Œ€์‘ํ•˜์ง€ ๋ชปํ•˜๋ฉด ์ดˆ์ง€๋Šฅ AI๊ฐ€ ์ž์œจ์ ์œผ๋กœ ์ง„ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์šฐ๋ ค๋ฅผ ์ œ๊ธฐํ•˜๋Š”๋ฐ์š”. ๊ทธ๋ ‡์ง€๋งŒ ๋ฉœ๋ผ๋‹ˆ๋Š” ์ด๋Ÿฐ ์ƒ๊ฐ์ด "๋งˆ๋ฒ•์  ์‚ฌ๊ณ "๋ผ๊ณ  ์ด์•ผ๊ธฐํ•˜๋ฉด์„œ ๋ฐ˜๋ฐ•ํ•ฉ๋‹ˆ๋‹ค. AI์˜ ๋Šฅ๋ ฅ์€ ๋ฐฉ๋Œ€ํ•œ ์ธ๊ฐ„ ๋ฐ์ดํ„ฐ์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์ด์ง€, ์Šค์Šค๋กœ ๋ฐœ๋‹ฌํ•œ ๊ฒฐ๊ณผ๊ฐ€ ์•„๋‹ˆ๋ผ๋Š” ์ ์„ ๊ฐ•์กฐํ•˜๋ฉด์„œ, ๊ทœ์ œ๋„ ํ˜„์‹ค์— ๋ฐ”ํƒ•์„ ๋‘๊ณ  ํ•ด์•ผ ํ•œ๋‹ค๊ณ  ์ด์•ผ๊ธฐํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ์˜๋Š”, AI์˜ ๋ณธ์งˆ, ๊ทธ๋ฆฌ๊ณ  ๊ทธ์— ๋งž๋Š” ๊ด€๋ฆฌ ๋ฐฉ์‹์ด ๋ญ˜๊นŒ ํ•œ ๋ฒˆ ๋‹ค์‹œ ์ƒ๊ฐํ•ด ๋ณด๊ฒŒ ํ•˜๋Š” ์ค‘์š”ํ•œ ์‹œ์‚ฌ์ ์„ ๋‹ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

๊ตฌ๊ธ€ ๋”ฅ๋งˆ์ธ๋“œ์˜ CEO ๋ฐ๋ฏธ์Šค ํ•˜์‚ฌ๋น„์Šค๊ฐ€ AI, ์ฐฝ์˜์„ฑ, ๊ทธ๋ฆฌ๊ณ  ๊ณผํ•™์˜ ํ™ฉ๊ธˆ๊ธฐ์— ๋Œ€ํ•ด ๋…ผํ•ฉ๋‹ˆ๋‹ค. AI๊ฐ€ AlphaFold ๊ฐ™์€ ํ˜์‹ ์ ์ธ ๊ธฐ์ˆ ๋กœ ์ธ๋ฅ˜๊ฐ€ ์ง๋ฉดํ•œ ๋‚œ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ํ–ฅํ›„ 5~10๋…„ ๋‚ด์— ์ง„์ •ํ•œ ๋ฒ”์šฉ ์ธ๊ณต์ง€๋Šฅ(AGI)์ด ๊ฐœ๋ฐœ๋˜์–ด์„œ ๊ณผํ•™๊ณผ ์ฐฝ์˜์„ฑ์˜ ์ƒˆ๋กœ์šด ํ™ฉ๊ธˆ๊ธฐ๋ฅผ ์—ด ๊ฒƒ์ด๋ผ๋Š” ์ „๋ง์„ ์ œ์‹œํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ๋ฏธ์Šค ํ•˜์‚ฌ๋น„์Šค์˜ ์ฃผ์š” ๋ฉ”์‹œ์ง€๋Š”, AI๊ฐ€ ๋‹จ์ˆœํžˆ ๊ธฐ์ˆ ์„ ๋ฐœ์ „์‹œํ‚ค๋Š” ๋„๊ตฌ๋ฅผ ๋„˜์–ด์„œ, ์ธ๊ฐ„์˜ ์ฐฝ์˜์„ฑ์„ ์ฆํญ์‹œํ‚ค๊ณ  ์ธ๋ฅ˜์˜ ์‚ถ์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ๊ฒฐ์ •์ ์ธ ์—ญํ• ์„ ํ•  ๊ฑฐ๋ผ๋Š”, ๊ฝค๋‚˜ ๋‚™๊ด€์ ์ธ ๋น„์ „์ž…๋‹ˆ๋‹ค.

์„ธ๋ฅด๊ฒŒ์ด ๋ ˆ๋นˆ ๋ฐ•์‚ฌ๋Š” ์ด ํŒŸ์บ์ŠคํŠธ์—์„œ ์™„์ „ ์ž์œจ ๋กœ๋ด‡์˜ ๋ฐœ์ „ ๊ฐ€๋Šฅ์„ฑ์„ ์ง„์ง€ํ•˜๊ฒŒ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. 2030๋…„์ฏค ๊ฐ€์‚ฌ๊นŒ์ง€ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋กœ๋ด‡์ด ๋“ฑ์žฅํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ „๋ง์„ ๋‚ด๋†“๊ณ  ์žˆ๋Š”๋ฐ์š”. ์‹ค์ „ ๊ฒฝํ—˜์„ ํ†ตํ•œ ๊ธฐ์ˆ  ํ–ฅ์ƒ๊ณผ ํ•™์Šต ๋Šฅ๋ ฅ์˜ ์ค‘์š”์„ฑ์„ ์—ญ์„คํ•ฉ๋‹ˆ๋‹ค. ๋นจ๋ž˜ ์ ‘๊ธฐ๋‚˜ ์ฃผ๋ฐฉ ์ฒญ์†Œ ๊ฐ™์€ ์„ฑ๊ณผ๋ฅผ ์˜ˆ๋กœ ๋“ค๋ฉด์„œ, ์•ˆ์ „์„ฑ๊ณผ ๋ฐ์ดํ„ฐ ํ™•๋ณด์˜ ๊ณผ์ œ๋ฅผ ์–ธ๊ธ‰ํ•ฉ๋‹ˆ๋‹ค. ๋˜ ์ค‘๊ตญ์˜ ์ œ์กฐ ๊ฒฝ์Ÿ๋ ฅ๊ณผ ๊ฒฝ์ œ์  ํŒŒ๊ธ‰ํšจ๊ณผ๋ฅผ ๊ณ ๋ คํ•  ๋•Œ, ๋กœ๋ด‡ ๊ธฐ์ˆ ์˜ ๊ท ํ˜• ์žกํžŒ ์ƒํƒœ๊ณ„ ๊ตฌ์ถ•์ด ์‹œ๊ธ‰ํ•ด ๋ณด์ธ๋‹ค๋Š” ์ด์•ผ๊ธฐ๋„ ๋ง๋ถ™์ด๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

์ƒˆ๋กœ ๋‚˜์˜จ, ์ฃผ๋ชฉํ•  ๋งŒํ•œ ์—ฐ๊ตฌ ๋…ผ๋ฌธ

โ€˜์ฃผ๋ชฉํ•  ๋งŒํ•œ ์ตœ์‹ ์˜ AI ๋ชจ๋ธโ€™์„ ๋จผ์ € ์†Œ๊ฐœํ•˜๊ณ , ๊ฐ ์˜์—ญ๋ณ„๋กœ โ€˜Top Pickโ€™์€ ํ•ด๋‹น ๋…ผ๋ฌธ ์•ž์— ๋ณ„ํ‘œ(๐ŸŒŸ)๋กœ ํ‘œ์‹œํ–ˆ์Šต๋‹ˆ๋‹ค!

์ฃผ๋ชฉํ•  ๋งŒํ•œ ์ตœ์‹  AI ๋ชจ๋ธ

  • VaultGemma โ€“ ๋””ํผ๋Ÿฐ์…œ ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ์™„์ „ํžˆ ์ ์šฉํ•ด์„œ 1B ํฌ๊ธฐ์˜ ๋””์ฝ”๋” ์ „์šฉ Gemma ๋ณ€ํ˜• ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ , ์‹ค์šฉ์ ์ธ DP ์Šค์ผ€์ผ๋ง ๋ฒ•์น™์„ ๋ณด์—ฌ์ฃผ๊ณ , ํ”„๋ผ์ด๋ฒ„์‹œ๋ฅผ ๋ณดํ˜ธํ•˜๋Š” ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•œ ๊ฐ€์ค‘์น˜๋ฅผ ๊ณต๊ฐœํ•ฉ๋‹ˆ๋‹ค. โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • Hunyuan-MT / Hunyuan-MT-Chimera โ€“ 33๊ฐœ ์–ธ์–ด์— ๊ฑธ์นœ ๋‹ค๊ตญ์–ด ๋ฒˆ์—ญ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ณ , ํ…Œ์ŠคํŠธ ์‹œ์ ์—์„œ ์—ฌ๋Ÿฌ ์„ค์ •์˜ ์ถœ๋ ฅ์„ ์ง‘๊ณ„, ๊ฒฌ๊ณ ์„ฑ์„ ๋†’์—ฌ์„œ WMT2025 ์„ฑ๋Šฅ์—์„œ ์ตœ์ฒจ๋‹จ์„ ๋‹ฌ์„ฑํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • mmBERT โ€“ 3T ํ† ํฐ์œผ๋กœ ํ˜„๋Œ€์ ์ธ ๋‹ค๊ตญ์–ด ์ธ์ฝ”๋”๋ฅผ ์‚ฌ์ „ ํ›ˆ๋ จํ•˜๊ณ , ์–ด๋‹๋ง๋œ ์–ธ์–ด ํ•™์Šต์„ ํ†ตํ•ด์„œ ๊ณ ์ž์› ๋ฐ ์ €์ž์› ์–ธ์–ด ๋ชจ๋‘์—์„œ ๋ถ„๋ฅ˜์™€ ๊ฒ€์ƒ‰ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • Qwen3-Next โ€“ ๊ฒŒ์ดํŠธ DeltaNet๊ณผ ๊ฒŒ์ดํŠธ ์–ดํ…์…˜์„ ๊ฒฐํ•ฉํ•˜๊ณ , ์ดˆํฌ์†Œ MoE์™€ ๋„ค์ดํ‹ฐ๋ธŒ ๋ฉ€ํ‹ฐ-ํ† ํฐ ์˜ˆ์ธก์„ ์ ์šฉํ•ด์„œ 80B ํŒŒ๋ผ๋ฏธํ„ฐ ์ค‘ ์•ฝ 3B๋งŒ ํ™œ์„ฑํ™”ํ•˜๋ฉด์„œ ์žฅ๋ฌธ ์ปจํ…์ŠคํŠธ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ค๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

์—์ด์ „ํŠธ, ๋„๊ตฌ ๋ฐ ํ™˜๊ฒฝ

  • ๐ŸŒŸ Tool-space interference in the MCP era: Designing for agent compatibility at scale (Microsoft) โ€“ Model Context Protocol ์ƒํƒœ๊ณ„์—์„œ ๋„๊ตฌ ์นดํƒˆ๋กœ๊ทธ๊ฐ€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ฐฉ์‹์„ ๋ถ„์„ํ•˜๊ณ , ํฌ๋กœ์Šค ์—์ด์ „ํŠธ์˜ ๋น„ํšจ์œจ์„ฑ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • ๐ŸŒŸ Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents (Stanford) โ€“ ์—ฐ๊ตฌ ๋…ผ๋ฌธ์„ ์ƒํ˜ธ์ž‘์šฉ ๊ฐ€๋Šฅํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” MCP ๊ธฐ๋ฐ˜ ์—์ด์ „ํŠธ๋กœ ๋ณ€ํ™˜, ์›๋ž˜ ์›Œํฌํ”Œ๋กœ์šฐ๋ฅผ ์‹คํ–‰ํ•˜๊ณ  ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • ๐ŸŒŸ Virtual Agent Economies (Google DeepMind) โ€“ ์—์ด์ „ํŠธ ๊ฐ„ ์‹œ์žฅ์„ ๊ฐœ๋…ํ™”ํ•˜๊ณ , ๊ฒฝ๋งค ๋ฉ”์ปค๋‹ˆ์ฆ˜, ๋ฏธ์…˜ ๊ฒฝ์ œ, ๊ทธ๋ฆฌ๊ณ  ์กฐ์ • ๊ฐ€๋Šฅํ•œ AI ๊ฒฝ์ œ๋ฅผ ์œ„ํ•œ ๊ฑฐ๋ฒ„๋„Œ์Šค๋ฅผ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • WebExplorer: Explore and Evolve for Training Long-Horizon Web Agents โ€“ ๋ณต์žกํ•œ ์›น ํƒ์ƒ‰ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๊ณ , ์žฅ๋ฌธ์˜ ์ปจํ…์ŠคํŠธ์™€ ๋„๊ตฌ ํ˜ธ์ถœ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•ด์„œ ์ตœ์ฒจ๋‹จ ๋ธŒ๋ผ์šฐ์ง•์„ ์œ„ํ•œ ์—์ด์ „ํŠธ๋ฅผ ํ›ˆ๋ จํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • EnvX: Agentize Everything with Agentic AI โ€“ GitHub ๋ฆฌํฌ์ง€ํ† ๋ฆฌ๋ฅผ ์ž์—ฐ์Šค๋Ÿฌ์šด ์ƒํ˜ธ์ž‘์šฉ๊ณผ ํฌ๋กœ์Šค ๋ฆฌํฌ์ง€ํ† ๋ฆฌ ํ˜‘์—…์ด ๊ฐ€๋Šฅํ•œ ์ž์œจ ์—์ด์ „ํŠธ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

์—์ด์ „ํ‹ฑ RL ๋ฐ ์žฅ๊ธฐ๊ฐ„ ์‹คํ–‰(Long-Horizon Execution)

  • ๐ŸŒŸ Bootstrapping Task Spaces for Self-Improvement (Meta) โ€“ ํƒ์ƒ‰์  ๋ฐ˜๋ณต ํ›ˆ๋ จ์„ ํ†ตํ•ด ์ž‘์—… ๊ณต๊ฐ„์„ ํ™•์žฅํ•˜๊ณ , ์ˆ˜ํ•™, ๋„๊ตฌ ์‚ฌ์šฉ, ML ์ž‘์—…์—์„œ ์ถ”๋ก  ์‹œ ์ž๊ธฐ ๊ฐœ์„ ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning โ€“ ํ˜„์‹ค์ ์ธ ํ™˜๊ฒฝ์—์„œ ๋‹ค์ค‘ ํ„ด ์˜์‚ฌ๊ฒฐ์ •์„ ์œ„ํ•œ LLM ์—์ด์ „ํŠธ๋ฅผ ํ›ˆ๋ จํ•˜๊ธฐ ์œ„ํ•œ ํ†ตํ•ฉ ํ”„๋ ˆ์ž„์›Œํฌ์™€ ์Šค์ผ€์ผ๋ง ์ „๋žต์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • Harnessing Uncertainty: Entropy-Modulated Policy Gradients for Long-Horizon LLM Agents โ€“ ๋ถˆํ™•์‹ค์„ฑ์„ ์ธ์ง€ํ•œ ๊ฒฝ์‚ฌ ์กฐ์ ˆ๋กœ ํ•™์Šต์„ ์•ˆ์ •ํ™”ํ•˜๊ณ , ์ž์‹  ์žˆ๋Š” ์˜ฌ๋ฐ”๋ฅธ ์—…๋ฐ์ดํŠธ๋ฅผ ๊ฐ•ํ™”ํ•˜๋ฉฐ ๋ถˆ์•ˆ์ •ํ•œ ์—…๋ฐ์ดํŠธ๋ฅผ ์–ต์ œํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • Staying in the Sweet Spot: Responsive Reasoning Evolution via Capability-Adaptive Hint Scaffolding โ€“ ๋ชจ๋ธ ๋Šฅ๋ ฅ์— ๋งž์ถฐ ์ ์‘ํ˜• ํžŒํŠธ๋ฅผ ๋™์ ์œผ๋กœ ์กฐ์ •ํ•ด ๋ฌธ์ œ ๋‚œ๋„๋ฅผ ์œ ์ง€ํ•˜๋ฉฐ ํ›ˆ๋ จ ํšจ์œจ์„ฑ๊ณผ ์ผ๊ด€์„ฑ์„ ๋†’์ž…๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing โ€“ ๋น„๋™๊ธฐ ๋กค์•„์›ƒ ๊ณต์œ ๋ฅผ ํ†ตํ•ด RL ํ›„์† ํ›ˆ๋ จ์„ ๋ถ„์‚ฐ์‹œํ‚ค๊ณ , ์ด์ข… ํ•˜๋“œ์›จ์–ด์—์„œ ํšจ์œจ์ ์œผ๋กœ ์Šค์ผ€์ผ๋งํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

์ถ”๋ก , ํ™˜๊ฐ, ๊ทธ๋ฆฌ๊ณ  ์‹ ๋ขฐ์„ฑ

  • ๐ŸŒŸ The Illusion of Diminishing Returns: Measuring Long Horizon Execution in LLMs โ€“ ๋‹จ๊ณ„๋ณ„ ์ •ํ™•๋„๊ฐ€ ์žฅ๊ธฐ ์ž‘์—…์—์„œ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์ธ ์„ฑ๊ณผ๋ฅผ ๊ฐ€์ ธ์˜ค๋Š” ๊ณผ์ •์„ ๋ณด์—ฌ์ฃผ๊ณ , ์‹คํ–‰ ์˜ค๋ฅ˜๊ฐ€ ์ถ”๋ก  ๊ฒฉ์ฐจ๋ณด๋‹ค ๋” ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ด์œ ๋ฅผ ์„ค๋ช…ํ•ด ์ค๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • ๐ŸŒŸ Why Language Models Hallucinate (OpenAI) โ€“ ํ™˜๊ฐ ํ˜„์ƒ์„ ํ›ˆ๋ จ ๋ฐ ํ‰๊ฐ€ ์ธ์„ผํ‹ฐ๋ธŒ์—์„œ ์˜ค๋Š” ํ†ต๊ณ„์  ์••๋ ฅ์œผ๋กœ ์„ค๋ช…ํ•˜๊ณ , ๋ณด์ •๋œ ๋ถˆํ™•์‹ค์„ฑ์ด ์•„๋‹ˆ๋ผ ์˜คํžˆ๋ ค ์ถ”์ธก์„ ๋ณด์ƒํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์›์ธ์ž„์„ ๋ฐํž™๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet โ€“ ์‚ฌ์‹ค ์ค‘์‹ฌ์˜ ํ™˜๊ฒฝ์—์„œ ๊ธด ์ถ”๋ก ์ด ์ข…์ข… ํ™˜๊ฐ์„ ์ฆ๊ฐ€์‹œ์ผœ์„œ, Test-Time ์Šค์ผ€์ผ๋ง์ด ์ฃผ๋Š” ์žฅ์ ๋„ ์ œํ•œ์ ์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฑธ ๋ฐํ˜€๋ƒ…๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

์•ˆ์ „, ๋ณด์•ˆ ๋ฐ ๊ฐ•๊ฑด์„ฑ

  • ๐ŸŒŸ Reasoning Introduces New Poisoning Attacks Yet Makes Them More Complicated (Google DeepMind) โ€“ CoT(Chain-of-Thought)๋ฅผ ํ‘œ์ ์œผ๋กœ ํ•˜๋Š” ๋ถ„ํ•ด๋œ ์ถ”๋ก  ๊ณต๊ฒฉ์„ ๋ณด์—ฌ์ฃผ๋Š”๋ฐ, ๋™์‹œ์— ์ƒˆ๋กœ์šด ๊ฐ•๊ฑด์„ฑ๋„ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ๋“œ๋Ÿฌ๋‚ฉ๋‹ˆ๋‹ค โ†’[๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • ๐ŸŒŸ All You Need Is A Fuzzing Brain: An LLM-Powered System for Automated Vulnerability Detection and Patching (Texas A&M University) โ€“ DARPA์˜ AIxCC์—์„œ ๊ฒ€์ฆ๋œ LLM ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•ด์„œ ์†Œํ”„ํŠธ์›จ์–ด ์ทจ์•ฝ์ ์„ ์ž๋™์œผ๋กœ ํƒ์ง€ํ•˜๊ณ  ํŒจ์น˜ํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • ๐ŸŒŸ R2AI: Towards Resistant and Resilient AI in an Evolving World (Tsinghua) โ€“ AI๊ฐ€ ์ ๋Œ€์  ํ”ผ๋“œ๋ฐฑ ๋ฃจํ”„๋ฅผ ํ†ตํ•ด์„œ ๋ฉด์—ญ๊ณผ ๊ฐ™์€ ์ €ํ•ญ๋ ฅ๊ณผ ํšŒ๋ณต๋ ฅ์„ ๋ฐœ๋‹ฌ์‹œํ‚ค๋Š” ๊ณต์ง„ํ™” ์•ˆ์ „ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • ๐ŸŒŸ Statistical Methods in Generative AI โ€“ ์ƒ์„ฑ AI ํŒŒ์ดํ”„๋ผ์ธ์—์„œ ์‹ ๋ขฐ์„ฑ, ๊ณต์ •์„ฑ, ์•ˆ์ „์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ํ†ต๊ณ„์  ๋„๊ตฌ์˜ ํ™œ์šฉ ๋ฐฉ์‹์„ ์กฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

์•„ํ‚คํ…์ฒ˜ ๋ฐ ํŠธ๋ ˆ์ด๋‹ ํŒจ๋Ÿฌ๋‹ค์ž„

  • Guided Decoding and Its Critical Role in Retrieval-Augmented Generation โ€“ RAG ์ถœ๋ ฅ์„ ๊ตฌ์กฐํ™”๋œ ํ˜•์‹์œผ๋กœ ์ œํ•œํ•˜๋Š” ๋””์ฝ”๋”ฉ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๋น„๊ตํ•˜๊ณ , โ€˜ํ™˜๊ฐ ์ œ์–ดโ€™์™€ โ€˜์‚ฌ์šฉ์„ฑโ€™ ๊ฐ„์˜ ๊ท ํ˜•์„ ๋งž์ถ”๋ฉด์„œ ์กฐํ™”์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • Revolutionizing Reinforcement Learning Framework for Diffusion Large Language Models โ€“ ํ™•์‚ฐ ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ์„ ์œ„ํ•œ ๊ถค์  ์ธ์ง€ ๊ฐ•ํ™”ํ•™์Šต(RL)์„ ๋„์ž…ํ•ด์„œ, ๋” ์ž‘์œผ๋ฉด์„œ๋„ ๊ฐ•๋ ฅํ•œ ์ถ”๋ก  ๋ชจ๋ธ์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • ๐ŸŒŸ Language Self-Play For Data-Free Training (Meta) โ€“ ๊ฒŒ์ž„ ์ด๋ก ์  ์ž๊ธฐ ํ”Œ๋ ˆ์ด๋ฅผ ํ™œ์šฉํ•ด์„œ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ ์—†์ด ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•˜๋Š”๋ฐ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฒ ์ด์Šค๋ผ์ธ๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์ž‘์—… ์„ฑ๊ณผ๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • ๐ŸŒŸ Causal Attention with Lookahead Keys โ€“ ์ „๋ฐฉํ–ฅ ์ปจํ…์ŠคํŠธ๋ฅผ ํ˜ผํ•ฉํ•˜๋ฉด์„œ๋„ ์ž๊ฐ€ํšŒ๊ท€ ์ œ์•ฝ์„ ๊นจ์ง€ ์•Š๋„๋ก Lookahead ํ‚ค๋ฅผ ํ™œ์šฉํ•ด์„œ ์ธ๊ณผ์  ์–ดํ…์…˜์„ ํ™•์žฅํ•ฉ๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์ถ”๋ก  ๋ฐ ํ†ตํ•ฉ

  • ๐ŸŒŸ Visual Representation Alignment for Multimodal Large Language Models (KAIST) โ€“ ์‚ฌ์ „ ํ›ˆ๋ จ๋œ VFM๊ณผ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ LLM์˜ ์‹œ๊ฐ ๊ฒฝ๋กœ๋ฅผ ์ •๋ ฌํ•ด์„œ ์„ธ๋ฐ€ํ•œ ์‹œ๊ฐ์  ์ถ”๋ก ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

  • Can Understanding and Generation Truly Benefit Together โ€“ or Just Coexist? โ€“ ์žฌ๊ตฌ์„ฑ ๊ธฐ๋ฐ˜์˜ ๊ฐ•ํ™”ํ•™์Šต์„ ํ†ตํ•ด์„œ ์ด๋ฏธ์ง€ ์ดํ•ด์™€ ์ƒ์„ฑ์„ ํ†ตํ•ฉํ•˜๊ณ , ์ƒํ˜ธ ๊ฐœ์„  ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค โ†’ [๋…ผ๋ฌธ ๋ณด๊ธฐ]

*๋ฆฌ๋ทฐ๋ฅผ ๋‚จ๊ธฐ์‹œ๋ ค๋ฉด ๋กœ๊ทธ์ธํ•˜์‹œ๊ฑฐ๋‚˜ ๊ตฌ๋…ํ•ด ์ฃผ์„ธ์š”. ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค!

์ฝ์–ด์ฃผ์…”์„œ ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ํ”„๋ฆฌ๋ฏธ์—„ ๊ตฌ๋…์ž๊ฐ€ ๋˜์–ด์ฃผ์‹œ๋ฉด ํŠœ๋ง ํฌ์ŠคํŠธ ์ฝ”๋ฆฌ์•„์˜ ์ œ์ž‘์— ํฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค!

Reply

or to participate.